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13. ANSTUACT (Ako.,,m "D .,ookj

Cyclostationary processes are an important class of nonstationary pro esses. in this report we
consider nonparametric estimation of the cyclic cross-spKctrum. A periodogram )ased estimator is
studied and its asymptotic behavior characterized. This extends the recent univariate work of
Dandawate and Giannakis to the multivariate case. T'I results are useful for a variety of multi-sensor
cyclostationary signal processing scenarios, rcuch as bearing estimation.
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1. Introdu tion

In this report we study the statistics of a periodogram-based estimate of
the cyclic cross-spectrum. Cur multivariate work is based heavily upon the
univariate work of Dandawate and Giannakis [1,2], in which they devel-
oped the theory of periodogram-based estimates of the cyclic spectrum of
a single cyclostitionary process. Their work extended conventional spec-
trum estimation theon, for stationary time series to the cyclostationary
case, especially rely'ng on the exposition of Brillinger [31 and Brillinger
and Rosenblatt 14,51. We simply extend the work of Dandawate and
Giannakis to the multivariate case. The present work can thus be viewed
as z generalization of the multivariate cross-periodogram spectrum estima-
tion theory for stationary processes as put forward by Brillinger [31.

The pi ,mary motivation for extending to the multivariate case is to handle
multiple time series pcobih:ms. as might arise in multi-sensor signal proc-
esring scenarios Because of the dimensiorali'y difficulties involved we
focus on the second-order cros'-spectrum case and do not consider esti-
mates of higher order cyclic cross-cumulants or polyspectra, while noting
that the univanate cyclostationarv theory has been extended to include
arbitrary kth-order vyclic sl.mt,;ics [ I ].

Cyclic (cross)-spectrum estimates based on the perikvJogram are particu-
iarly appealing due to their nonparamemc nature, and becauc they allow
the use of the fast Fourier t-ansform (FFT) algorithm, which speeds
computation. It is shown that such estimates of the kclic cross-spectrum
axe consistent and -symptoticafly normally distributed under mild condi-
tions on the time series. This will allow for optimal criteria to be devel-
oped for detcction and estimation schemes based on the cyclic cross-
spectrum. For example, the optimal estimation of the time difference of
arrival between two sersors is key for bearing estimation schemes, and
this delav can be estimated for cyclostationarv signals via the cyclic cross-
specz-um. Thus, the results of this report will prove useful in the analysis
of such multi-sensor scenarios.

2. Background

Consider the vector-valued time series X(t) for t = 0, 1, 2. with real-
valued components x,(t), i = 1 ,.. r. These might arise as the outputs of
multiple sensors, for example. We assume without loss of generality that

Eix,(t)l = 0 for each choice of i. With z,(t) and x (t) components (-f X(t),
we define their time-varying cross -covariance to be

C, (t -1r7) E S i,(t + r-)r.,(t)].
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If xi(t) and x3(t) are stationary, then cij(t; T) = cj(T-) is the conventioial

cross-covariance and exhibits no time dependence. Backg] ound on the
stwtionary cross-covariance can be found, for example, in Priestly
[6, chapt.. 9]. If x,(t) and x,(t) are cyclostationary. then c,,(t; -) is periodic

(or almost periodic) in t. so for each fixed lag 7 the time-varying covari-
ance can be expanded in a Fourier series (e.g., see Besicovitch [7]). The
resulting Fourier series coefficients are the cyclic cross-c--variance, given by

iT-1
C (kT) lira - ZC3(;T

"T-. T t=O (2)

with o called the cvclefrequency. In analogy with the stationary case, we

may also consider the Fourier transform of c 1 (t: T) and C,,(a; T) with

respect to T. yielding, respectively, the time-varv'ing spectrum

Suj(t:• Cj •_ (t: 7) C-',
(3)

and the rvclc spectrum, given by

S~j (a ý,!)(4)

To obtain the "auto- versions of these functions we simply set i = 3 so that,
for example, c,,(I: -) c,(t; T) is the time-varying autocorrelation.

Note that C.,(O; r) is tile correlation as conventionally defined for station-

ary processes. Similarly, S, (0: ;) is the power spectrum. defined as the
Fourier transform of C,(0: 17). Thus, the statistics of stationary processes
are a special case of cyclostationary statistics with cycle frequency o = 0,
which corresponds to periodic statistics with period zero- Note also that

C,I(a, -) and S,1 (a. .;) are time-invariant quantities, which is a fundamen-

tal reason why c,,clic statistics are an important tool for analysis of

nonstationary processes.

In this rep.ort ,ve analyze the properties of a periodogram-ba ed estimate

of S,,(o, .,A We make use of thefinite Fourier translorm of r,(U). defined
as

1-0

and the cyclic cross-periock gram, defined as

X 1 ( 6 )
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where * denotes complex conjugate. Since x,(t) is real valued, this may be
written

I(T() X (T)(" X(T) ( ',,j Ta- ) (7)

The definition of equation (6) is a generalization of the un iariate version
of the definition used by Hurd [8].

In deriving the covariance of I 3T)(o we make use of higher order

cunmulants. All of the above definitions may be generalized to higher order
cumulant cases. The "auto" higher order versions are defined by
Dandawate I1]. Under the assumption that E/lX,(t)lk] < oc, we define the
joint cumulani of order k of X(t) as,'

C13o, Clk ,,... ,) =2 C. M(8) X (

for k Ž 2. In the case of stationary processes

(, ....., (t , ... , t ) = ca I....A (r ,-.. 7k ) (9)

while in the time-varying case, in analogy with equation (1), we explicitly
maintain the time dependence as -

c, a, , (tI.-.- t k -- c.,,. .. (t: ..... rk I) ( o

For X(t) cyclostationary then, in extension of equation (2), we define,

'Y'- C

to be the kth-order cyclic cumulant of X(t) at cycle frequency a. The
time-varying cumuiant spectrum (polyspectrum) is written

• 1  .ah ~," ", ')k-) Cj k t: ('a .. . I)(T''',•-' +' +dJ'kTk -1

S a,- 12)T!r = - € ' + 7, , .---

and the cyclic cwanulant spectrum is definLef ;V1

* Ju. ,ak(,/o 1;*•, .; --I)= Z ... ( .... • ; r, .r,_k)E -j(<'""+ -" '>---
J-C2 J-
I-- .- 7 ,' TI+ T

S.1~ - ."A -- LL;," rAkk 1) ,k( lT-,'k•I)

'See Brillinger [3, p. 211. We use the notation c,,. -k) to denote arbitrary higher order cumulants of kth order.
rather than using c,, (). For fixed order we retain the previous notaion. so, for exmipke, we use c(-) rather than
ca4 /,-) in the second-ow'der case.



3. Cyclic Cross-Periodogrami

In this section we explore the cyclic cross-periodogram I7) (a; w).
defined by equation (6), as a potential estimate of the cyclic cross-
spectrum S,,(ci,: w). The asymptotic properties of I(,T) (a; L) are summa-
rized in a theorem, which shows that 1J" ((; w) does not result in consis-

tent estimates of S,1 (a; w). This is analogous to the stationary case, where

the conventional cross-periodogram results in inconsistent estimates of the
power spectrum, e.g., see Priestly [6, chapt. 9]. As is well known in the
stationary case, the key to obtaining consistent estimates is smoothing the

periodogram. As shown by Dandawate and Giannakis, this idea extends to

the cyclic case as well 11,21.

To begin our study of [T (c, ,). we st ,te assumptions on the time series
X(t). These mixing conditions insure that samples of X(t) that are well

sepaiated in time are becoming statistically independent. For a general

discussion of mixing conditions, see Brillinger [3, chapt. 11.

Assumption la

Oc 0

I Ca I .-. a I(t: .ri ,k-1)i < ýx. for z =k -- l.Vt.Vk. (14)

Assumption I b

z ''ll(t: 7)1 < OCf. Vt. (1)

Assumption 2a

Y :,l•"' .4 (0-.71,° 7AT !' ... ' fo)r i I,- 1. k - ] , V o. Vk. (16)•'

YI -- x" rk I= CC•

Assumption 2b

7 1 t',, ( 1to 7)1 <- Dý 4 (17 '

Note that Assumptions I b and 2b are the second-order cases (k = 2) of the
mote general Assumptions l a and 2a. respectively. For clarity we have

included Assumptions Ib and 2b so we can refer specifically to the sec-

ond-order case when desired. We proceed by stating a lemna that charac-

terimes the rate of convergence (as T -- oc) of the cyclic cumulant spec-

trum. In the following the notation a, = O(b,) means that la,/b,l is
bounded for n sufficiently large, e.g., see Brillinger [3, chapt. 1.
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Lemmra 1 l/'Assionption la holds, met,~

For Olie case of k -2. Lemma 1 reduIces to the following corollary.

Corollary 1If 1Assunption 11)hoi.ds. i.'wIn

Stj (t;w) c'] (t; T)W 1
-C(T)

The next lemma describ-es the rate c~f convergence of the finite Fourier
transform of the kth-order -ame-varyirýg ':umulant spectrum. We are gener-
alizing Theorem 4.3.2 of Brillinge 3.Eepofi iia ota sdb
Dandawate, w hich is a generalization of the stationary case of Brillinger
and Rosenblatt [41.

Lemma 2 If cissumnrion 2a holds, then

T-1
ci7 *j X( w )aw+w~ + 0(1.~(0

For the case of k = 2, lemma 2 reduces to the following corollary.

Corollary 2fIf a, sumption 2b holds then,

T-1

cum{Xj~(o) A"(W')} jSyt WI)w~ + 0(1) c (21)
t=O

We are now prepared to state the main r~esult of this section in the follow-
ing theorem that describes the ayymptotic bias and variance 3f i~he cyclic
cross-periodogram gf a',.The proof of the theorem relies on the
above lemmas,

Theorem 1 (Bias and \ riance of the cyclic cross -periodogram).

Suppose X (t) is cyclostationary with zero mean as defined in section 2. If

S11kI(ct; L-w1, W-2, LL3) exists and is finite. and Assumptions 1 and 2 hold, then

S.,(~.) -c ij ;w~ (22)

9



and

SS, b i~ p -F 3' , c) .-" k(.'. (o - * - p•: o w-~). L:i (

It is apparent fromi equation (22) that I ,, is asymnptotically un

biased. Howecr, from equation (2.1) we conclude that, in general,

1I ) (wv L) has non-zero covariance and is therefore an inconsistent esti-
matot of S,,(oi w). A consistent estimator will subsequently be obtained
based on a smoothed version of I (o}; w). Before w: do ihis we consider
some special cases of equation (23) in the next section, and in particular
we develop the asymptotic variance-covariance matrix for 0 "(; w).

4. Special Cases and the Variance-Covariance Matrix

In this section we consider some special cases of the results of Theorem 1.
First, we give two useful symmetry properties. As we have shown in
theorem 1,

= Lr E[If (a; w)], (24)

sc that

Sj a U) i E[T) , W (T) •=

S~j~a;•)= Tir -• [ , ( j (a -- W)]. (25) .. .

From equation (25), and using the fact that the xi(t) are real-valuea, we
can deduce the following symmetry properties:

&j 'a; a = Sj, (a; w), (26)

S, ');w) = Si(-a; -w). (27)

Next we consider some important cases of equation (23). By setting i j
k = I and using equavion (26) in equation (23), we obtin the univaiiate
results of Dandawate and Giannakis (compare with Dandawate [i ,21),

Tra cov{I(a(; w), I T)(W; /)} --- S(- j;-p)S,,(e - w + It - -; IL - 3)

+ (28)

Another important case that may be obtained from equation (23) is the
covariance of the conventional cross-periodogram for stationary processes.
From equation (23), we have

ITincou{J1 '(0; -. ' i (0;w)}= Szk(O; w)Sjl(O; --w) + Sil(2; u)Sjk-(- 2 .'; -w. (29)

10



Note that, for statonari processes. .S,' (f ,) (0 for o t 0- Iv this case
equatiOn (219) reduces to

f, .(0, 40 ,, )Y0; Cw), 4,, g 0, 7rr,, ,.,,,.'t{ W ; ) ,ki (0;, ' .) I -- ) +(.r-+,,,~~~~~~~ (o 5,3(t 1,)W;,( o, + s,(t); L')••0;<) . ... k, W7

This expression can bxe found, for example, in Priestly 16, chapt. 91.

For periodically correlated (PC) processes we are restnrcted to the set of
cycle frequencies given by o c {2 rk/7T+j, for k'- 0, 1 ..... 7j- 1. Using
(23), this leads to

tim 'dl2rrlk * 73.2:t) J .S,(', X t2.S 1 o(t; a - w), w 3

I k )) + A) k "---

(31)

for ?i integer.

To complete our results on the covariance of I "(j(a; L), we derive its
variance-covariance matrix. From t l.uation (23) it follows easily that

litncov{! t')((I; L), k. ((;W) = "ik(G: L)S (OlI -- L) + S•,(2w - a-;w)Sjk(a - 2,w;a - w).
(32)

We now consider some cases of equation (32).

Setting i = k and j = 1 and using the synmnetry properties given by equa-
tions (26) and (27), we obtain the following expression for the asymptotic
variance of the cyclic cross-periodogram,

vaI{ T[ ((a; W) Si,, t: LO); S(0; (1-- _) W - I_ 1(2 - a; )12. Q:,3)

Seting i - j and k = I yields the covariance between two cyclic auto-
periodograms,

ca(nI I(T) (; ) (a- Le)} S,] (0; ý)OS,, '0; a - L) + S1j (2w - a;"w) (2w - a;-m).

With i k I we obtain the variance of a cyclic auto-periodogram,

,- (Y{I7 (a; S)} . 1(0; .,;)S,, (ti; - L) + !jSj(2w - a•: -). ()1 )

i1



W_. sunimarize thesc results in the asymptotic variancc-covar'ance matrix

I.-

S'o. '2 * 2.~o
S (2'li 1 i m ,m , m,, i * m tm i L m ..m , (0. (0 s.. (Ui ( ;. S •( ,,0 '

.2_

S,)----

- ~ ~ ~ ~ ~ ' A.* *(-.),(; -

S,,,
2

-n)4 ,4 . -.. ' ,(. ~.c 2- o.A .S,2.- S,2... + '
4

"(
2

,. - o.;)12

(36)

5. Si-oothed C'_.yclic Cross-Periodograin

It is well kiiown, for the case of stationary processes, that the periodograrn
leads to inconsistent estimates. Consistent estimates are obtained by
convolving tLe periodogram with a spectral window, which amiounts to
performing local averaging. The choice of window allows the user to
performn a bias/variance tradeoff in the resulting estimate. In our case, as
we have seen inTheorest 1. the cyclic cross-periodogramn-Co ) an is an

inconsistent estimator of the cvctic cross- s-pctrum SýPGi: 0- As shown by
Dandawate and Giarnals [ 1,2], smoothing of the cyclic periodogramw
results in consistent estimates of the cyclic (auto)- spectrum. Here we
extend the idea to the cyclic cross -spectrum with the same resul,.s.

Consider the smoothed cyclic cross-periodograrn estinmae of the cyclic
cross-spectrum given by

ý (TT ) ,} i ""- 1 (17"- ,L./i',.,,2{ r.(, ,. .. 2 w s ,

>j (o) W( T 1 (37)

Th.ý spectral window W'T)(wo) obeys certain wvell known properties. e.g.,
See Brillinger [3, chapt. 5]. These air briefly outlined next in Assumption 3.

Assumption 3

Wtw) is an even, real-valued function satisfying

leas t iconisentesiaes Cnisten estiate <u obtine)b

The sp tectral window ,ighting function W17)(0 is constucted from W(W) as

li,(T) (LL) - 14-' (.B-'(w + 2rn))
ý_10 13(39)
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where B3Tis a sequence for T= 1, 2_. with B,,> 0, BT--* 0, and
B7 -ooas T --+ cc.

We now present a theorem that describes the asymptotic behavior of

S~~f(a;~),given by equation (37), demonstrating its consistency and
asymptotic normal ity.

Theorý-m 2

Suppose X(t) is cyclostaticnary with zero mnean as, defined in section 2.
Under Assumptions 1 through 3, then

ur 5 C(IO=S, ) (40)

and

limn BiTcov{5.c (a k) jjT (a;O t) }k I r &v4)(;wQ (;g ,

where E,,, f -J W (7)12dT is the window energy and the cyclic cross-

rieriodo gram cuvari .ance is given in Theorem 1. Also, the resulting cyclic
spectrumn estimate is asymptotically normally distributed.

6i. C3oriC~tASions-

Theorem 2 is the main result of this report and is useful for a number of
reasons. '1'ie. finite Fourier transform X(7)(W), as defined by equation (5),
can be evaluated using the PT-1 algorithm for composite record length T,

so ~~,'(~)Canl be readily obtained. [he smoothing step necessary to
obtainiS~!(~ w) via equ~tion (37) is a straightforward local averaging
procedure. Thus, thc smoothed cyclic cross-periodogram estimate of the
cycl~c ("-055-spectrum can be readily computed.

Tihe aSNym1pto-tic variance expression of theoremn 1, combined with the.
asym~ptot ic normality of the estimiate, allows for asymptotically optimal
criteria to be developed for a variety of detection and estimation schemes.
[~or example[, ol(- canl de.velop)I optnimal detection tests for the presence oi
cyclostatioiiai-y bechavior and estimate the cycle fiequencies [91. Finally,
we note that thle cioss-slpect11iiI and cros.;-corielation play a prim-rary role
in multi-sensor- detectityi and estimation problen1s. For examipie, the time
(liflfel-ece, of at] ival betweeln senisors can be used t(-. estimate tile angle of'
arrival of a signal, a ColiL:el,)t that easily extends, to cyclostatioiiary signals.
Thus, the results of this report will priove useful In analysis of such mnulti-

scnis(r cyclostatimiaiay signal pr cessiiig scenrions.

13
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Appendix.--Proofs

Proof of Lemma I

Using equation (12) in the lcft-hand side of equation (18) yields

(T,-k) (T-.) .Isl,....,ak(t;0J1,.. ,w - - r = T-/- " _, -j -l ,:o,,. •(1; T1 ,'' ,•- _)•-2(Wr1+ t'k 1'

ITjj>T 17- 11I>7T

-- I I +±ITi- IcI,,...,(t;ri, ,rk-.1)I =
ITl>T Irk-l>7

(42)

where the equality in the last line follows after applying Assumption la.C-

Proof of Corollary I

Corollary 1 follows imn)-,diate!y from Lemma I with k = 2, a, = i, and
a 2 =j.o

Proof of Lemma 2

Using equation (5) and the multilinearity property of cumul;nts [3, eq
(4.7)] we have

ti=0 tk- i=0

Using the assignments t = tk, 7 1 = "A- 2 = t2 - tk, . . . Tk- = tk-1 -k,

and A = w, , we can rewrite equation (43) as

T-k 7'-1 -"-1

t.=0 14 ', =0 t 4ý,k I, 1=0

where we have made use of equations (8) and (10). Now, letting La =

-min( 1 .  Tk_l, 0), and tb - T- - I .- max(7-t, . . , 0), thea we may
write,

"T-1 -1 Tb

Y" ... E Y C J'A ,. . (- (45)

ýj - T- 1) Tk15



for 0 'C- ,, !< f, -- I I If this last incquahtl i, noti ,,alti-Ocd then thc hrmit',
of the summation arc taken tO hc the empty ,tw

It may be shown that 131

t-t. t=O0

where 1R < IKN [ir,- • + ± rk- 1]] with a constanw. Using this

and the Fourier relation

Ca,-..*,ak (t;Tl,' ', rk--I 'ft a .. -.a 1 ;" l, " k-l )(J t, 47* ~ C 7 27 2 .a{x (47)

allows us to write,

CUM{X,,) (W I), X' Uk

2-j T - "- -.(WTj+. k 7k.- 1),• - C ,'aP(t' , , Tk-1)
t=0 7i=-(T--k) "_ =-(T-1)

T-T 71 (48)

The second term on the right hand side of equation (48) is bounded, as we
show next. First, use equation (47) with t = 0 in the second term of equa-
tion (48), and then note that the result is less than or equal to

• - • [Il' .... + I•- 11C ,...,a(o;T ,. ••, -)0(49)
"T1 -(7'-I1) TJ,_ 1=-(T-i)

by a iplying Assumption la. Thus the second term of equation (48) is
boiuded as follows:

T-I T-1

ft~ > >2 2Cal,..,a7a;1, -,Tk_1)

T-i 7-1

< 1>7.1. + + Ii I + ... +± Tk -_ C •.1(C1 , ... , _lak)(O 1, Tk ) 1( ), (50)

and we can rewrite equation (48) as

X (T' (Tc.,,•{<A ,,, ,., (Wk)}
T-1 T- 1 T-1

= > -C > eE (1T1+'•- 7i-)cal (•)a(;'r,. rk_).--(1). (51)
t=O 16=-(T-1) Tk-.z=-(T-1)

16



111c rceSult followA" hx. Uirig t.r~rama I In equation (511 ).L1

Proof of C:orollary 2

This result follows immediatelY from Lecmma 2 with k = 2, a, = i, and
4 a2 = J-E]

Proof of Theorem 1

First we show that , T(a; 4)) is an asymptotically unbiased estimator of
S' 1(a: a;). Taking the expectation of the cyclic cross -periodograrn yields

(T) 1T-1 T-.
E~~~h1 1 (E ) E[xi(t)x,(t)]e-jwtei-(aw)s. (2

T =O 50(2

Next we employ su~bstitutions similar to those used in the proof of Lemma
2.et7-= s -t t =-min(7r,O0), and tb = T - 1 - nax(r, 0), leading to

1 tb T-I

Now, using Corollary 1, we obtain,

That 1if) (a; L,) is asymptotically unbiased is confirmed by taking the
limit of equation (54) as T-+ co, which results in Sijac; w).

Next we develop an expression for the asymptotic covariance of
(T) (a; ca). A theorem of Brillinger [2, theorem 2 3.2], based on a previ-

ous result of Leonov and Shiryaev, provides a general method for express-
ing a joint cumniflant as a sumn of cumulants. Using this, we can express the
covariance of the cyclic cross perio-dogram, as,

(T~~f(~ ), I)J3;)} cum{X( T)(W)XfIý(a w), X(ý_[ -T(t_)

-- +um{ (T)() Xj(T)( - M) ~( 1 ) X'T)(L-/)

+ CUM{Xi(T () x13~p i), CUMIX7) (a _w),4D( _,L),

(55)
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where we have made use of the fact that cov{X, y} = cum rx, ?j*} [2].

Using Lemma 2 and Corollary 2 in equation (55) yields

CM) (T);(CC; W), I f(T ;•) }

T'-1
E 5--•' , jkl(t-) W, a .- W, - ji)e-J'-)
t=o

IT =o I T=o (56)
+S-(t; W)e3(w+j [ •)-(--a+-(56)

+ [T -s(t;,W)eJw+J-)t [ Sjk(t; a -+ O(T
t=0 t=0

By assumption, S,1 ki(a; w1, u,2, w-,) exists and is finite. Therefore, the first
term of equation (56) goes to zero as T[-- oo, and we are left with

lmcov{Q7(a; w), 'ý)f; ) -p)S 1(a - W + 1 U a - )
- S 1 (,w+ - A;•)Sk(a- - u; - ). n(57)

Proof of Theorem 2

The proof of Theorem 2 is somewhat lengthy, but it follows along the lines
nf 1nndawte's Thenremns 2.3-3 and 2.3-5- For thic rea.on we o(mit the

detailed proof here. The proof of equations (40) and (41) follows by
generalizing Dandawate's Theorem 2.3.3 to the cross-pexiodogram case.
Proof of the asymptotic normality can be achieved by showing that the
highlir order (k > 2) cumulants of the estimate vanish asymptotically, as in

Dandawate's Theorem 2.3.5.0
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